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ABSTRACT

A new ART code based on the iterative refinement method of least

squares solution for tomographic reconstruction is presented. Accuracy

and the convergence of the technique is evaluated through the applica-

tion of numerically generated interferometric data. It was found that,

in general, the accuracy of the results were superior to other reported

techniques. The iterative method unconditionally converged to a solu-

tion for which the residual was minimum. The effects of increased input

data error, limited total viewing angle, and reduced number of input

data were studied. The inversion error was found to be only a function

of the input data error. The convergence rate, on the other hand, was

affected by all three parameters. Finally, the technique was applied to

experimental data and results reported.
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I. INTRODUCTION

During recent years, image reconstruction techniques have been

successfully applied to several fields such as medicine, astronomy,

electron microscopy, nuclear magnetic resonance, geophysics and optical

interferometry. An extensive review can be found in Reference i.

In 1964, prior to the development of optical holography the

axially symmetric density field had been reconstructed by using the

inversion of Abel's integral equation (2). Under symmetry conditions the

Radon transform reduces to the Abel equation. Since 1965, holographic

interferometry has been applied to aerodynamics, heat transfer and com-

bustion problems. These developments are discussed in detail by

Vest (3) .

There are several difficulties associated with the reconstruction

of phase objects:

(a) No sharp boundaries can be defined for phase objects. The

definition of the reconstruction region is based on

a priori information about the flow field. In general, the

contribution of the phase object outside the reconstruction

zone is assumed to be negligible.

(b) Relatively large errors are present in the interferometry

data. The optical path differences are recorded as inter-

ference fringes. The accuracy of the fringe data ordinar-

ily may not be better than I/2 of the fringe spacing. In
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addition, for an unsymmetric density field, the numberof

fringes for each projection varies for different view

angles resulting in a nonuniform data set. The ideal pro-

jection data is a set of non-overlapping, equally spaced,

parallel rays covering the whole reconstruction region.

(c) Only the relative phase shift of the projection can be

measured by the interferogram data. There is, therefore, a

possibility of incorrect identification of fringe numbers.

This results in a set of "slightly" inconsistent data.

The mathematical reconstruction method employed in such cases

should not be overly sensitive to the "noisy" or Inconslstant data.

Although the Radon transformation

+m

= ff n(x,y)6[p -xcos(0)- ysin(O)]dxdy
-4D

(i)

provides a rigorous solution to the problem of reconstruction from

projections, the solution is uniquely determined only by an infinite set

of perfect projections. Here, £ is the optical path length, n is the

refractive index, 6 is the Dirac delta function, 6 is the projection

angle, p is the coordinate along the projection plane, and x and y are

the coordinates describing the reconstruction region. In practical

problems, the discrete nature of projection data and the unavoidable

measurement errors may result in the failure of reconstruction.
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In this paper, the iterative refinement method of least squares

solution for tomographic interferometry is discussed. A complete set of

computer codes for density reconstruction from holographic interfero-

grams was made. The effects of projection number, limited viewing angle

and the measurementerror on the reconstructed image are determined

through numerical experimentation. The flow field around the tip region

of a revolving helicopter rotor blade was reconstructed from 40 inter-

ferograms. The results of the reconstructed density field are pre-

sented.

II. ITERATIVEREFINEMENTMETHODOFLEASTSQUARESOLUTION

In principle, the ART (algebraic reconstruction technique) algo-

rithms are the schemesfor solving a large system of linear equations.

The reconstruction region is divided into a square grid (M = m x m cell)

and the refractive index within each cell or pixel, nij , is assumed con-

stant. The Radon transformation then reduces to a set of discrete

linear equations

m m

Y y
i=l j=l

Wij(P,e) nij = L(p,O)
(2)

where Wij(P,8) are weight factors determined from geometric relations.

It should be noted that only those factors associated with pixels

through which the projection ray passes are nonzero. For k different
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projection angles, each having n nonoverlapping and equally spaced

parallel rays, the number of equations N, is given by N = k x n.

Equation (2) can be written in the form

CX+L=O (3)

where, L and X are N and M dimensional vectors respectively, and C is

the coefficient matrix with N X M elements. Equation (3) can be trans-

formed into a symmetric, positive definite, NORMAL EQUATION given by

CT L + CT C X = 0 (4)

In practice, due to measurement errors and other inconsistencies,

Equation (3) becomes

R = C X + L (5)

where R is the residual vector. An approximate solution is sought for

which the Euclidean norm of the residual vector URJ is minimum. The

Euclidean norm is defined as IR! =_ Ri * R_. The solution of the
i

normal equation gives the standard least square solution of (3).

Procedures for obtaining solutlons to a large system of llnear

equations can be found in a number of different scientific areas. Iter-

atlve techniques have been widely used. It begins with an initial estl-

mate and then it repeatedly modifies the estimate until some threshold

condition is satisfied. There are different ways to modify the
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estimate. The effectiveness of a method depends on the matrix

character. Considering the features of matrix C (large and sparse) and

relatively large measurement errors, the method of CONJUGATE GRADIANTS

is found to be applicable for image reconstruction. (4)

The computer procedures of conjugate gradiant method are as

follows:

Initial vector

k = 0: X(0) = 0; R(0) = L (6)

For iterative number k = 1,2...

r(k-l) = cTR(k-I)

s(k) = - r(k-l) for k - 1

s(k) = - r(k-l) + s(k-l)nr(k-l)N/Nr(k-2)Mfor k > 1

q(k) = C s(k)

X(k) = X(k-l) + s(k)Mr(k-l)_/_q(k)M

R(k) = R(k-l) + q(k)Nr(k-l)n/Uq(k)H

(7)

(8)

(9)

(10)

(11)

The matrix C has only five percent nonzero elements. It can be

stored permanently or, in the case of limited storage capacity, may be

computed according to a simple geometric relation for every ray. The

vectors that must be stored are X, R, s, and q. Accordingly, a proce-

dure written in PASCAL running under CPM-86 with MT+86 compiler has been

written. This procedure runs on IBM PC microcomputer, and is limited to

20 x 20 mesh size.
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It can be _roven (5) that: The norm of the residual vector R

decreases with increasing iteration number. Thus, in principle, this

code is a technique minimizing the residual R to the level determined by

the inherent errors associated with the computer truncation and

measurement data. Therefore, the final reconstruction accuracy is

determined by data noise. Here the errors associated with the

measurement of the optical path length (fringe lines) are the major

attrlbutor to the data noise.

To evaluate the characteristics of the developed tomography code,

a numerically generated density field, Figure la, was used as the input

for the numerical test. It represents the calculated air density dis-

tribution over the tip region of the rotor blade in a plane above the

blade (6). The distribution of the refractive index variance,

x ffi(no-n), is calculated and shown in Figure lb. The data for the

integral optical length difference as a function of ray parameters, 6

and p, was generated from Equation (2). The errors associated with

optical length measurement, encountered in real tomography, were

artificially added to the fringe data file. Fringe round-off errors of

±0.5, ±0.05 and ±0.005 were used here. The reconstruction code was

parametrically evaluated for different numbers of equations and total

viewing angles. The numerical test matrix is shown in Table I.

Figure 2 shows the reconstructed field for Case I after different

iterations. The overall features are apparent after two iterations and

further refinement of the solution is obtained with additional iterations.

The total reconstructed error, Rr, is also noted on Figure 2. Here, the

reconstruction error is defined as
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Rr "_ _ [xi'_,In-- xlj'rec]21 i JI I [xlj.in ]2
(12)

where xij,in, and xlj,rec are input and reconstructed refractive index

variances, respectively.

The dependence of the residual vector norm on the number of iter-

ations for Cases I to 7 of Table I is shown on Figure 3. Figures 4, 5

and 6 demonstrate the effects of fringe number round-off error and view

angle range on the reconstruction error. From these and other numerical

experimentations, the following conclusion may be drawn:

The convergence rate is increased as the projection ray number,

N, is increased. The corresponding inversion error for a suffi-

cient number of iterations is, in general, independent of N.

The normal of the residual vector, R, in all cases, uncondition-

ally converges to a limit which is a strong function of the input

data error. The resulting error for the first few iterations is

independent of the input data error. However, for more accurate

input data, additional iterations result in more accurate

results. This underlines the importance of the accuracy of the

data set. It also proposes a guideline for determining the maxi-

mum number of iterations based on the rate of change of the

residual.
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Finally, limited look angles, (_30 °) do not have a significant

effect on the convergence rate or the accuracy of the recon-

structed data. Acceptable results were obtained for a total view

angle of 30 °• Care must be taken to ensure that sufficient

information is recorded on the interferograms when the view angle

limitations are imposed.

III. THE PROCEDURE FOR PROCESSING EXPERIMENTAL DATA

Fi_,re 7 shows the holographic interferometry arrangement at the

AVRADCOM Laboratory of NASA Ames for studying the flow around a

revolvlng hellcopter blade. (7) The coordinate system (x,y) is wing-

fixed (x-spanwise, y-chordwise). The projection of point "A" on the

wing defines the origin for coordinate p along any azimuthal angle. The

photograph of a typical interferogram is shown in Figure 8.

Forty interferograms were digitized using a Tektronix 4112 dis-

play terminal and a graphic tablet. The data were reduced and a map of

the optical path as a function of height above the blade was developed.

Data at each elevation and for all viewing angles were grouped (Z-files),

and constituted the input data for the reconstruction code.

The reconstructed density distribution, (p/po), produced by the

tomographic reconstruction code is shown in Figures 9 & I0 for the

heights z = 0.5, I, 1.5 and 2 inches (chord C - 3 inches; the leading

edge of the blade Y/C = -0.5; aspect ratio = 13.7). The optimum number

of iterations was about 3 to 6 for the experimental data. The

computation time on an IBM PC was approximately 3 minutes per iteration.
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IV. DISCUSSION

A new ART code based on the iteratlve refinement method of least

square solution is developed for tomographlc reconstruction of the

three-dlmenslonal density field. The features of the technique was

investigated using numerically generated Interferometry data. It is

shown that, in general, the ART code used here, is capable of recon-

structing phase objects using limited viewing angle or using data with

relatively large errors.

In comparison to other reconstruction techniques, it is believed

that it is possible to obtain more accurate results with the ART code.

For similar numerical tests, the reconstructed mean-square error

for view angles of ±90 @ and ±40 @ were reported to be 6.7% and 11%,

respectively, when the convolution back projections technique was

used. (6) The corresponding values for Rr become 26% and 33%,

respectively. Similar situations were examined in Cases 3 and I0 with

Rr at only 3% and 10% for 20 iterations. On the other hand, the

computation time for Iteratlve techniques are generally higher than some

other techniques.

An important feature of the technique is that with limited reso-

lution (say, 20 x 20), it is possible to repeatedly use the same code

and zoom into the regions surrounding important features of the flow,

and hence, reconstruct the flow field in greater detail. For this, the

input data for the subsequent analysis must be corrected.

Finally, a strong feature of the reconstruction code is its abil-

ity to accept data within limited view angles. The density field of the
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numerically generated data was reconstructed for a total view angle of

30 ° and with a final error of 10%. This result is extremely important

when the application of tomography to the flow field within a wind

tunnel is considered.
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TABLE I. THE NUMERICAL TEST MATRIX

CASE

I

2

3

4

5

6

7

8

9

i0

II

12

13

14

15

16

17

FRINGE NUMBER

ROUND OFF ERROR

VIEW ANGLE

(degree)

0.005 0 .. 180

0.005 0 .. 90

0.005 0 .. 180

0.050 0 .. 180

0.050 0 .. 180

0.500 0 .. 180

0.500 0 .. 180

0.005 -75 .. 75

0.005 -60 .. 60

0.005 -45 .. 45

0.005 -30 .. 30

0.005 -15 .. 15

0.050 -75 .. 75

0.050 -60 .. 60

0.050 -45 .. 45

0.050 -30 .. 30

0.050 -15 .. 15

NUMBER OF NUMBER OF

VIEWS POINTS PER VIEW

61 20

61 20

31 20

61 20

31 20

61 20

31 20

31 20

31 20

31 20

31 20

31 20

31 20

31 20

31 20

31 20

31 20
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Figure 1. Numerically generated density and refractive index distribution. 
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Figure 2. Reconstructed f ie ld of refractive index variance (no-n) for Case 1. 
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Figure 7. Rotating blade tip region and the coordinates.
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Figure 9. Reconstructed density fields for different heights above 
blade chord line. 
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